Государственное автономное профессиональное образовательное учреждение Ленинградской области «Киришский политехнический техникум»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.17 ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

По специальности:

15.02.01 «Монтаж и техническая эксплуатация промышленного оборудования»

Форма обучения: очная

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Процессы и аппараты химической промышленности», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259).

Организация – разработчик:

ГАПОУ ЛО «Киришский политехнический техникум»

Разработчик:

Кокшарова Ирина Юрьевна, преподаватель ГАПОУ ЛО «Киришский политехнический техникум»

СОДЕРЖАНИЕ

1.	ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	стр. 4
2.	СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3.	УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	9
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	10

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.17 Процессы и аппараты нефтеперерабатывающего производства

1.1. Область применения программы

Программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности среднего профессионального образования (далее СПО) специальность 151031 «Монтаж и техническая эксплуатация промышленного оборудования» и дополнительных требований работодателей

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: дисциплина входит в общепрофессиональный цикл.

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения дисциплины:

В результате освоения учебной дисциплины обучающийся должен

уметь:

- правильно охарактеризовать процесс нефтепереработки;
- определять аппараты в которых проводят данные процессы;
- составлять материальные и итоговые балансы;

знать:

- назначение химико-технологических процессов;
- назначение каждого процесса;
- условия протекания процессов.

1.4. Рекомендуемое количество часов на освоение примерной программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 84 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 84 часов;

2. СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Количество часов		
Аудиторные занятия:			
Введение	2		
1. Гидравлические процессы	24		
2. Тепловые процессы	16		
3. Массообменные процессы	29		
4. Химические процессы	13		
Итого:	84		
Консультация	6		
Итоговая аттестация в форме дифференцированного зачета			
Всего:	90		

2.2. Тематический план и содержание учебной дисциплины «Процессы и аппараты нефтеперерабатывающего производства»

Наименование разделов и тем	Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся	Объем часов	Уровень освоения
1	2	3	4
Введение	Сущность дисциплины. Классификация основных процессов и аппаратов. Общие принципы	2	1
	расчета: материальный и тепловой баланс.		
Раздел 1.	Гидравлические процессы.	24	
Тема 1.1 Основы Гидравлики	1. Гидравлические элементы потока жидкости. Расход и средняя скорость.	8	2
	2. Уравнение расхода, материальный баланс потока, уравнение неразрывности потока.		
	Уравнение Бернулли. Виды измерения расхода скоростей. Критерий Рейнольдса.		
	3. Теория подобия. Движение жидкости через трубопроводы. Расчет простого трубопровода.		
	Гидравлический удар.		
	Практическое занятие:		2-3
	1. Расчет физических характеристик жидкого нефтепродукта.		
	2. Определение давлений, расходов, скоростей потока жидкости.		
	3. Потери напора на трение по длине трубопровода.		
Тема 1.2 . Насосы и компрессоры.	1. назначение и типы насосов. Применение. Основные параметры работы. Принцип действия	9	2
	центробежного насоса. Кавитация. Эксплуатация центробежных насосов.		
	2. Характеристика поршневых насосов. Определение производительности. Выбор насоса.		
	3. назначение и типы компрессоров. Параметры работы. Процесс сжатия газов. Поршневые и		
	центробежные насосы.		
	Практическое занятие:		
	1. определение производительности, напора, мощности центробежного насоса или компрессора.		
Тема 1.3. Гидродинамика сыпучих	1. Движение жидкости и газа в слое сыпучего материала. Псевдоожиженные системы.	7	
материалов.	2. потери напора в сое сыпучего материала, критические скорости. Катализаторопроводы,		
	принцип их расчета. Конструкция и расчет газораспределительных решеток.		
	Контрольная работа №1.		
Раздел 2	Тепловые процессы.	17	
Тема 2.1. Основы теплопередачи.	1. Способы проведения тепловых процессов. Виды передачи тепла.	8	2
	2. Основное уравнение теплопередачи. Уравнение теплопроводности, коэффициент		
	теплопроводности.		
	3. Конвекция. Лучеиспускание. Закон Стефана-Больцмана и Кирхгофа. Совместный пернос		
	тепла конвекцией и лучеиспусканием.		
	Практическое задание:		
	1. определение тепловых нагрузок для различных случаев теплообмена		
	2. расчет коэффициента теплоотдачи		
	3. расчет коэффициента теплопередачи		
Тема 2.2. Теплообменные аппараты.	1. Нагревание и охлаждение. Классификация. Конструкция основных типов. Основные	3	2
	показатели работы.		

	2. Классификация теплообменных аппаратов. Их устройство.		
Тема 2.3. Трубчатые печи	1. Назначение трубчатых печей. Конструкция основных типов. Порядок расчета трубчатой печи.	6	
	2. Сущность и способы выпаривания. Принципы выбора выпарных установок различных		
	конструкций.		
	Контрольная работа № 2		
	Практическое занятие:		
	1. Расчет трубчатой печи		
Раздел 3.	Массообменные процессы.	29	
Тема 3.1. Основы теории	1. Общие признаки массообменных процессов. виды. Равновесие между фазами. Равновесная и		2
массопередачи	рабочие линии.		
-	2. Основное уравнение массопередачи, коэффициент массопередачи. Материальный баланс.		
	Число теоретических тарелок		
	Практическое задание:		
	1. расчет основных размеров массообменных аппаратов		
Тема 3.2. Теория перегонки	1. Повторение основных законов термодинамики, законы идеальных и реальных газов. Законы	3	2
	Дальтона и Рауля. Определение давления насыщенных паров. Равновесные кривые.		
	2. испарение и конденсация бинарных и многокомпонентных систем. Перегонка в присутствии		
	водяного пара.		
	Практическое задание:		
	1. расчет с использованием законов Рауля и Дальтона		
	2. построение кривых равновесия фаз, кривых истинных температур кипения и линий		
	однократного испарения нефти.		
Тема 3.3. Ректификация	Дистилляция. Парожидкостное равновесие для систем с полной и ограниченной взаимной	6	2
-	растворимостью.		
	Расчет равновесия для идеальных бинарных смесей. Простая и фракционная перегонка,		
	перегонка с дефлегмацией.		
	Практическое задание:		
	1. расчет ректификационной колонны с определением числа теоретических тарелок графическим		
Тема 3.4. Абсорбция и десорбция.	1.Процессы абсорбции в химической технологии. Влияние температуры и давления на	4	2
	процесс абсорбции. Закон Генри, Закон Дальтона.		
	2. Десорбция. Методы проведения процессов. тепловой баланс десорбера.		
	Практическое задание:		
	1. определение размеров абсорберов. Определение числа тарелок десорбера. Тепловые балансы.		
Тема 3.5. Экстракция.	1. Основные закономерности экстракции. Устройство и принцип действия экстракторов.	4	2
	Одноступенчатая и многоступенчатая экстракция из двухкомпонентных растворов.		
	Практическое задание.		
Тема 3.6. Адсорбция	1. Адсорбция и ионный обмен. Основные промышленные адсорбенты. Равновесие.	5	2
-	Материальный баланс. Кинетика адсорбции		
	Контрольная работа № 3		
Раздел 4.	Химические процессы	13	
Тема 4.1. Основы ведения	1. Основы ведения химических процессов. Классификация химических процессов.	4	2
химических процессов.	2. Химические процессы, применяемые в нефтепереработке. Основные кинетические		

	зависимости		
Тема 4.2. Реакторные устройства	1. Реакторные устройства. Определение материального баланса реактора. Определение	9	2
	теплового баланса реактора.		
	Контрольная работа № 4		
	Практическое задание:		
	1. расчет реактора каталитического крекинга		
		84	

Для характеристики уровня освоения учебного материала используются следующие обозначения: 1. – ознакомительный (узнавание ранее изученных объектов, свойств); 2. – репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)

- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению Реализация учебной дисциплины требует наличия учебного кабинета «Технологическое оборудование отрасли».

Оборудование учебного кабинета:

- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплект учебно-наглядных пособий по «Процессам и аппаратам нефтеперерабатывающего производства».

Технические средства обучения:

- компьютер с лицензионным программным обеспечением и мультимедиапроектор.

Компьютерные учебные модели (оборудования нефтепереработки)

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Процессы и аппараты химической технологии. Общий курс. Учебник. М.: Лань, 2019
- 2. Баранов Д.А., Кутепов А.Н. Процессы и аппараты. М.: ИЦ Академия, 2020
- 3. Марченко А.А. Процессы и аппараты мембранной технологии (газоразделение). М.: Филин, 2018
- 4. Сугак А.В. и др. Процессы и аппараты химической технологии. М.: ИЦ Академия, 2015
- 5. Баннов П.Г. Процессы переработки нефти в 3-х тт.М., «ЦНИИТЭ Нефтехим.», 2018
- 6. Иоффе И.Л. Проектирование процессов и аппаратов химической технологии. М.: Альянс, 2015

Интернет-ресурсы:

- www.kodges.ru Электронная библиотека Кодгес
- knigi.tr200.ru Интернет-Портал является самообновляемой электронной библиотекой книг, информацию в которую добавляют пользователи
- lib.sibnet.ru Электронная библиотека онлайн на Sibnet.ru
- www.mirknig.com Книги, журналы, аудиокниги.
- <u>studyspace.ru</u> Бесплатная библиотека StudySpace это общедоступное хранилище знаний в помощь студентам и аспирантам.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
1	2
Умения:	
правильно охарактеризовать процесс;	Практическая работа,
определять аппараты в которых проводят данные процессы; составлять материальные и итоговые балансы;	контрольная работа, внеаудиторная самостоятельная работа, индивидуальные задания
Знания:	
назначение химико-технологических процессов;	
назначение каждого процесса;	
условия протекания процессов.	